Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 239: 115916, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134704

RESUMO

In the early stages of drug discovery, beyond the biological activity screening, determining the physicochemical properties that affect the distribution of molecules in the human body is an essential step. Plasma protein binding (PPB) is one of the most important investigated endpoints. Nevertheless, the methodology for measuring %PPB is significantly less popular and standardized than other physicochemical properties, like lipophilicity. Here, we proposed how to modify protocols presented by Valko into column safety conditions and evaluated their robustness using fractional factorial design. For robustness testing, four factors were selected: column temperature, mobile phase flow rate, maximum isopropanol concentration in the mobile phase, and buffer pH. Elaborate methods have been applied for the analysis of HSA affinity for three groups of antibiotic-oriented substances that vary in chemical structure: fluoroquinolones, sulfonamides, and tetrazole derivatives. Furthermore, based on the reversed-phase chromatography the workflow of pilot studies was proposed to select molecules that have high affinity to HSA and can not be eluted from the HSA column using the concentration of organic modifier recommended by the column manufacturer.


Assuntos
Quimiometria , Albumina Sérica Humana , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Albumina Sérica Humana/metabolismo , Proteínas Sanguíneas/metabolismo , Ligação Proteica
2.
Antibiotics (Basel) ; 12(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38136725

RESUMO

The rapid increase in strains that are resistant to antibiotics requires new active compounds to be found whose mechanism of action on bacteria is different to those that are currently known. Of particular interest are compounds that occur in plants as secondary metabolites. The focus of this study concerns the examination of the effects of synthetic cinnamic acid derivatives, with 4-chloro-2-mercaptobenzenesulfonamide moiety on Enterococcus spp. with HLAR (high-level aminoglycoside resistance) and VRE (vancomycin-resistant Enterococcus) mechanisms. The minimum inhibitory concentration (MIC) values of the tested compounds were determined using the serial dilution method for Enterococcus spp. groups, and the most active compounds were as follows: 16d, 17c, 16a, 16c and 16f (2-4 µg/mL). These compounds, at a concentration of 4 × MIC, inhibited the biofilm formation of HLAR strains (70 to 94%). At concentrations of 2 × MIC and 4 × MIC, they also inhibited the growth of VRE strains (42 to 96%). The best effect produced on the formed biofilm was demonstrated by compound 16f (from 62% MIC concentration to 89% 4 × MIC concentration) on the tested HLAR strains. In vitro studies, using the peripheral blood of domestic sheep, demonstrated the stable bacteriostatic activity of the tested compounds against Enterococcus spp. The compounds 16a, 16c, 16d, 16f and 17c showed synergism and additivity with ampicillin, streptomycin, gentamicin and vancomycin against resistant strains of Enterococcus spp. The tested compounds, when combined, reduce the MIC for antibiotics by 800 to 10,000 times for HLAR strains and by 8 to 10,000 times for VRE strains. The MIC of the tested compounds, in combination with antibiotics, is reduced 2-16-fold for HLAR strains and 2-32-fold for VRE strains. These studies demonstrate the potential for the therapeutic use of synthetic, cinnamic acid derivatives, with 4-chloro-2-mercaptobenzenesulfonamide moiety, to work against clinical strains of Enterococcus spp.

3.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298719

RESUMO

A series of novel 2-alkythio-4-chloro-N-[imino-(heteroaryl)methyl]benzenesulfonamide derivatives, 8-24, were synthesized in the reaction of the N-(benzenesulfonyl)cyanamide potassium salts 1-7 with the appropriate mercaptoheterocycles. All the synthesized compounds were evaluated for their anticancer activity in HeLa, HCT-116 and MCF-7 cell lines. The most promising compounds, 11-13, molecular hybrids containing benzenesulfonamide and imidazole moieties, selectively showed a high cytotoxic effect in HeLa cancer cells (IC50: 6-7 µM) and exhibited about three times less cytotoxicity against the non-tumor cell line HaCaT cells (IC50: 18-20 µM). It was found that the anti-proliferative effects of 11, 12 and 13 were associated with their ability to induce apoptosis in HeLa cells. The compounds increased the early apoptotic population of cells, elevated the percentage of cells in the sub-G1 phase of the cell cycle and induced apoptosis through caspase activation in HeLa cells. For the most active compounds, susceptibility to undergo first-phase oxidation reactions in human liver microsomes was assessed. The results of the in vitro metabolic stability experiments indicated values of the factor t½ for 11-13 in the range of 9.1-20.3 min and suggested the hypothetical oxidation of these compounds to sulfenic and subsequently sulfinic acids as metabolites.


Assuntos
Antineoplásicos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células HeLa , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Linhagem Celular Tumoral , Apoptose , Relação Dose-Resposta a Droga
4.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049849

RESUMO

Cinnamic acid is a plant metabolite with antimicrobial, anticancer, and antioxidant properties. Its synthetic derivatives are often more effective in vitro than parent compounds due to stronger biological activities. In our study, we synthesized ten new N-(4-chloro-2-mercapto-5-methylphenylsulfonyl)cinnamamide derivatives, containing two pharmacophore groups: cinnamic acid moiety and benzenesulfonamide. The antimicrobial activity of the obtained compounds was estimated using different types of Gram-positive and Gram-negative bacteria, fungus species of Candida albicans, as well as clinical strains. The compounds were evaluated on biofilm formation and biofilm formed by Staphylococcus clinical strains (methicillin-resistance S. aureus MRSA and methicillin-resistance coagulase-negative Staphylococcus MRCNS). Furthermore, blood bacteriostatic activity test was performed using S. aureus and S. epidermidis. In cytotoxic study, we performed in vitro hemolysis assay on domestic sheep peripheral blood and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on human cervical HeLa, ovarian SKOV-3, and breast MCF-7 cancer cell lines. We also estimated antioxidant activity of ten compounds with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays. Our results showed a significant antimicrobial activity of the compounds. All of them were active on Staphylococcus and Enterococcus species (MIC was 1-4 µg/mL). The compounds 16d and 16e were the most active on staphylococci clinical strains and efficiently inhibited the biofilm formation and biofilm already formed by the clinical staphylococci. Moreover, the hemolytic properties of the tested compounds occurred in higher quantities (>32.5 µg/mL) than the concentrations that inhibited both the growth of bacteria in the blood and the formation and growth of biofilm. The results of MTT assay showed that compounds 16c, 16d, 17a, and 17d demonstrated the best activity on the cancer cells (the IC50 values were below 10 µg/mL). Compound 16f was the least active on the cancer cells (IC50 was > 60 µg/mL). Antiradical tests revealed that compounds 16f and 17d had the strongest antioxidant properties within the tested group (IC50 was 310.50 ± 0.73 and 574.41 ± 1.34 µg/mL in DPPH, respectively, and 597.53 ± 1.3 and 419.18 ± 2.72 µg/mL in ABTS assay, respectively). Our study showed that the obtained cinnamamide derivatives can be used as potential antimicrobial therapeutic agents.


Assuntos
Anti-Infecciosos , Antioxidantes , Animais , Ovinos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Staphylococcus aureus , Meticilina/farmacologia , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
5.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901869

RESUMO

The untypical course of reaction between chalcones and benzenesulfonylaminoguanidines led to the new 3-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-2-(1-phenyl-3-arylprop-2-enylideneamino)guanidine derivatives 8-33. The new compounds were tested in vitro for their impact on the growth of breast cancer cells MCF-7, cervical cancer cells HeLa and colon cancer cells HCT-116 by MTT assay. The results revealed that the activity of derivatives is strongly related to the presence of hydroxy group in the benzene ring at the 3-arylpropylidene fragment. The most cytotoxic compounds 20 and 24 displayed mean IC50 values of 12.8 and 12.7 µM, respectively, against three tested cell lines and were almost 3- and 4-fold more active toward MCF-7 and HCT-116 when compared with non-malignant HaCaT cells. Furthermore, compound 24 induced apoptosis in cancer cells and caused a decrease of mitochondrial membrane potential as well as an increase of cells in sub-G1 phase in contrast to its inactive analog 31. The strongest activity against the most sensitive HCT-116 cell line was found for compound 30 (IC50 = 8 µM), which was 11-fold more effective in the growth inhibition of HCT-116 cells than those of HaCaT cells. Based on this fact, the new derivatives may be promising leading structures for the search for agents for the treatment of colon cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Relação Estrutura-Atividade , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Células HeLa , Apoptose , Guanidinas/farmacologia , Estrutura Molecular , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203445

RESUMO

Chalcones and their derivatives, both natural and synthetic, exhibit diverse biological activities. In this study, we focused on designing and synthesizing (E)-2,4-dichloro-N-(4-cinnamoylphenyl)-5-methylbenzenesulfonamides 4-8 with the following two pharmacophore groups: 2,4-dichlorobenzenesulfonamide and chalcone. The obtained compounds displayed notable anticancer effects on various human cancer cells, such as cervical HeLa, acute promyelocytic leukemia HL-60, and gastric adenocarcinoma AGS, when assessed with the MTT test. The activity of all compounds against cancer cells was significant, and the obtained IC50 values were in the range of 0.89-9.63 µg/mL. Among all the tested compounds, derivative 5 showed the highest activity on the AGS cell line. Therefore, it was tested for cell cycle inhibition, induction of mitochondrial membrane depolarization, and activation of caspase-8 and -9. These results showed that this compound strongly arrested the cell cycle in the subG0 phase, depolarized the mitochondrial membrane, and activated caspase-8 and -9. Similar to the anticancer effects, all the obtained compounds 4-8 were also assessed for their antioxidant activity. The highest antiradical effect was demonstrated for derivative 5, which was able to inhibit DPPH and ABTS radicals. All examined compounds showed dose-dependent activity against neutrophil elastase. Notably, derivatives 7 and 8 demonstrated inhibitory properties similar to oleanolic acid, with IC50 values of 25.61 ± 0.58 and 25.73 ± 0.39 µg/mL, respectively. To determine the antibacterial activity of derivatives 4-8, the minimum bacteriostatic concentration (MIC) values were estimated (>500 µg/mL for all the tested bacterial strains). The findings demonstrate the substantial potential of sulfonamide-based chalcone 5 as a promising drug in anticancer therapy.


Assuntos
Chalcona , Chalconas , Humanos , Chalconas/farmacologia , Antioxidantes/farmacologia , Caspase 8 , Células HL-60
7.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806186

RESUMO

In the search for new compounds with antitumor activity, new potential anticancer agents were designed as molecular hybrids containing the structures of a triazine ring and a sulfonamide fragment. Applying the synthesis in solution, a base of new sulfonamide derivatives 20-162 was obtained by the reaction of the corresponding esters 11-19 with appropriate biguanide hydrochlorides. The structures of the compounds were confirmed by spectroscopy (IR, NMR), mass spectrometry (HRMS or MALDI-TOF/TOF), elemental analysis (C,H,N) and X-ray crystallography. The cytotoxic activity of the obtained compounds toward three tumor cell lines, HCT-116, MCF-7 and HeLa, was examined. The results showed that some of the most active compounds belonged to the R1 = 4-trifluoromethylbenzyl and R1 = 3,5-bis(trifluoromethyl)benzyl series and exhibited IC50 values ranging from 3.6 µM to 11.0 µM. The SAR relationships were described, indicating the key role of the R2 = 4-phenylpiperazin-1-yl substituent for the cytotoxic activity against the HCT-116 and MCF-7 lines. The studies regarding the mechanism of action of the active compounds included the assessment of the inhibition of MDM2-p53 interactions, cell cycle analysis and apoptosis induction examination. The results indicated that the studied compounds did not inhibit MDM2-p53 interactions but induced G0/G1 and G2/M cell cycle arrest in a p53-independent manner. Furthermore, the active compounds induced apoptosis in cells harboring wild-type and mutant p53. The compound design was conducted step by step and assisted by QSAR models that correlated the activity of the compounds against the HCT-116 cell line with molecular descriptors.


Assuntos
Antineoplásicos , Benzenossulfonatos , Triazinas , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Benzenossulfonatos/química , Benzenossulfonatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , Triazinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo
8.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807212

RESUMO

Sulfonamides are a classic group of chemotherapeutic drugs with a broad spectrum of pharmacological action, including anticancer activity. In this work, reversed-phase high-performance liquid chromatography and biomimetic chromatography were applied to characterize the lipophilicity of sulfonamide derivatives with proven anticancer activities against human colon cancer. Chromatographically determined lipophilicity parameters were compared with obtained logP, employing various computational approaches. Similarities and dissimilarities between experimental and computational logP were studied using principal component analysis, cluster analysis, and the sum of ranking differences. Furthermore, quantitative structure-retention relationship modeling was applied to understand the influences of sulfonamide's molecular properties on lipophilicity and affinity to phospholipids.


Assuntos
Quimiometria , Cromatografia de Fase Reversa , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa/métodos , Análise por Conglomerados , Humanos , Análise de Componente Principal , Relação Quantitativa Estrutura-Atividade , Sulfonamidas/farmacologia
9.
Bioorg Chem ; 104: 104309, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011532

RESUMO

A new series of N-(aryl/heteroaryl)-2-chlorobenzenesulfonamide derivatives 4-21 have been synthesized, and evaluated at the National Cancer Institute (USA) for their in vitro activities against a panel of 60 different human cancer cell lines. Among them, compounds 16, 20 and 21 exhibited remarkable cytotoxic activity against numerous human cancer cell lines. We found that sulfonamide derivative 21 appeared to be more selective than compounds 16 and 20. In comparison to compounds 16 and 20 it showed higher cytotoxic activity against A549 non-small cell lung adenocarcinoma and HCT-116 colon carcinoma cells and was less toxic to HEK-293 human embryonic kidney cells and HaCaT immortalized human keratinocytes. Treatment of A549 and HCT-116 cells with compound 21 resulted in the G0/G1-cell cycle arrest with a concomitant increase in p53 and p21 protein levels. Moreover, compound 21 led to ATP depletion and disruption of the mitochondrial membrane potential in both studied cell lines. Our results suggest that 2,4-dichloro-N-(quinolin-8-yl and/or 1H-indazol-7-yl)benzenesulfonamides serve as novel promising anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Clorobenzenos/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Clorobenzenos/síntese química , Clorobenzenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
10.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331219

RESUMO

A series of novel 2-[(4-amino-6-R2-1,3,5-triazin-2-yl)methylthio]-4-chloro-5-methyl-N-(5-R1-1H-benzo[d]imidazol-2(3H)-ylidene)benzenesulfonamides 6-49 was synthesized by the reaction of 5-substituted ethyl 2-{5-R1-2-[N-(5-chloro-1H-benzo[d]imidazol-2(3H)-ylidene)sulfamoyl]-4-methylphenylthio}acetate with appropriate biguanide hydrochlorides. The most active compounds, 22 and 46, showed significant cytotoxic activity and selectivity against colon (HCT-116), breast (MCF-7) and cervical cancer (HeLa) cell lines (IC50: 7-11 µM; 15-24 µM and 11-18 µM), respectively. Further QSAR (Quantitative Structure-Activity Relationships) studies on the cytotoxic activity of investigated compounds toward HCT-116, MCF-7 and HeLa were performed by using different topological (2D) and conformational (3D) molecular descriptors based on the stepwise multiple linear regression technique (MLR). The QSAR studies allowed us to make three statistically significant and predictive models for them. Moreover, the molecular docking studies were carried out to evaluate the possible binding mode of the most active compounds, 22 and 46, within the active site of the MDM2 protein.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química
11.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210190

RESUMO

To learn more about the structure-activity relationships of (E)-3-(5-styryl-1,3,4-oxadiazol-2-yl)benzenesulfonamide derivatives, which in our previous research displayed promising in vitro anticancer activity, we have synthesized a group of novel (E)-5-[(5-(2-arylvinyl)-1,3,4-oxadiazol-2-yl)]-4-chloro-2-R1-benzenesulfonamides 7-36 as well as (E)-4-[5-styryl1,3,4-oxadiazol-2-yl]benzenesulfonamides 47-50 and (E)-2-(2,4-dichlorophenyl)-5-(2-arylvinyl)-1,3,4-oxadiazols 51-55. All target derivatives were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. The obtained results were analyzed in order to explain the influence of a structure of the 2-aryl-vinyl substituent and benzenesulfonamide scaffold on the anti-tumor activity. Compound 31, bearing 5-nitrothiophene moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 0.5, 4, and 4.5 µM, respectively. Analysis of structure-activity relationship showed significant differences in activity depending on the substituent in position 3 of the benzenesulfonamide ring and indicated as the optimal meta position of the sulfonamide moiety relative to the oxadizole ring. In the next stage, chemometric analysis was performed basing on a set of computed molecular descriptors. Hierarchical cluster analysis was used to examine the internal structure of the obtained data and the quantitative structure-activity relationship (QSAR) analysis with multiple linear regression (MLR) method allowed for finding statistically significant models for predicting activity towards all three cancer cell lines.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química
12.
Int J Mol Sci ; 21(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892248

RESUMO

Rising resistance of pathogenic bacteria reduces the options of treating hospital and non-hospital bacterial infections. There is a need to search for newer chemotherapies that will show antimicrobial ability against planktonic cells as well as bacterial biofilms. We have synthesized a series of N-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)amides, namely, molecular hybrids, which include a 2-mercaptobenzenosulfonamide fragment and either cinnamic or cyclohexylpropionic acid residues. The antimicrobial activity of compounds 8‒17 was evaluated on Gram-positive, Gram-negative bacteria and fungal species. Experiments took into account investigation of antibacterial activity against planktonic cells as well as biofilms. Compounds 8‒17 showed high bacteriostatic activity against staphylococci, with the most active molecules 10 and 16 presenting low MIC values of 4-8 µg/mL against reference methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains as well as clinical isolates. Compounds 10 and 16 also showed an ability to inhibit biofilms formed by MRSA and MSSA. The potential of 10 and 16 as antibiofilm agents was supported by cytotoxicity assays that indicated no cytotoxic effect either on normal cells of human keratinocytes or on human cancer cells, including cervical, colon, and breast cancer lines.


Assuntos
Amidas/farmacologia , Anti-Infecciosos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana/métodos , Plâncton/efeitos dos fármacos
13.
Behav Brain Res ; 359: 671-685, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267715

RESUMO

Recent preclinical studies point to muscarinic and GABAB receptors as novel therapeutic targets for the treatment of schizophrenia. This study was aimed to assess the role of muscarinic and GABAB receptor interactions in animal models of schizophrenia, using positive allosteric modulators (PAMs) of GABAB receptor (GS39783), muscarinic M4 (VU0152100) and M5 (VU0238429) receptor, and partial allosteric agonist of M1 receptor (VU0357017). DOI-induced head twitches, social interaction and novel object recognition tests were used as the models of schizophrenia. Analyses of DOI-induced increases in sEPSCs (spontaneous excitatory postsynaptic currents) were performed as complementary experiments to the DOI-induced head twitch studies. Haloperidol-induced catalepsy and the rotarod test were used to examine the adverse effects of the drugs. All three activators of muscarinic receptors were active in DOI-induced head twitches. When administered together with GS39783 in subeffective doses, only the co-administration of VU0152100 and GS39783 was effective. The combination also reduced the frequency but not the amplitude of DOI-induced sEPSCs. Neither VU0357017 nor VU0238429 were active in social interaction test when given alone, and also the combination of VU0152100 and GS39783 failed to reverse MK-801-induced deficits observed in this test. All muscarinic activators when administered alone or in combination with GS39783 reversed the MK-801-induced disruption of memory in the novel object recognition test, and their actions were blocked by specific antagonists. None of the tested compounds or their combinations influenced the motor coordination of the animals. The compounds had no effect on haloperidol-induced catalepsy and did not induce catalepsy when administered alone. Pharmacokinetic analysis confirmed lack of possible drug-drug interactions after combined administration of GS39783 with VU0357017 or VU0152100; however, when the drug was co-administered with VU0238429 its ability to pass the blood-brain barrier slightly decreased, suggesting potential drug-drug interactions. Our data show that modulation of cholinergic and GABAergic systems can potentially be beneficial in the treatment of the positive and cognitive symptoms of schizophrenia without inducing the adverse effects typical for presently used antipsychotics.


Assuntos
Antipsicóticos/farmacologia , Neurotransmissores/farmacologia , Receptores de GABA-B/metabolismo , Receptores Muscarínicos/metabolismo , Esquizofrenia/tratamento farmacológico , Regulação Alostérica , Animais , Antipsicóticos/farmacocinética , Benzamidas/farmacocinética , Benzamidas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ciclopentanos/farmacocinética , Ciclopentanos/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Indóis/farmacocinética , Indóis/farmacologia , Masculino , Camundongos , Neurotransmissores/farmacocinética , Piridinas/farmacocinética , Piridinas/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Esquizofrenia/metabolismo , Tiofenos/farmacocinética , Tiofenos/farmacologia
14.
Monatsh Chem ; 149(10): 1885-1898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237621

RESUMO

ABSTRACT: A new series of 2-alkylthio-N-(quinazolin-2-yl)benzenesulfonamide derivatives have been synthesized and evaluated in vitro for their antiproliferative activity by MTT assay against cancer cell lines HCT-116, MCF-7, and HeLa as well as the NCI-60 human tumor cell lines screen. In NCI screen, three compounds inhibited approximately 50% growth of RPMI-8226 and A549/ATCC cell lines. The mean of IC50 calculated in MTT assays for three tested cell lines was about 45 µM for four compounds. The QSAR allowed finding statistically significant OPLS models for HeLa cell line. Metabolic stability in vitro studies indicated favorable and unfavorable structural elements. The good metabolic stability, with t1/2 higher than 40 min, was observed for three derivatives, which together with their antiproliferative activity and good ADMET profile, makes them good leading structures for further research.

15.
J Enzyme Inhib Med Chem ; 33(1): 1430-1443, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30220229

RESUMO

In this work, a target-based drug screening method is proposed exploiting the synergy effect of ligand-based and structure-based computer-assisted drug design. The new method provides great flexibility in drug design and drug candidates with considerably lower risk in an efficient manner. As a model system, 45 sulphonamides (33 training, 12 testing ligands) in complex with carbonic anhydrase IX were used for development of quantitative structure-activity-lipophilicity (property)-relationships (QSPRs). For each ligand, nearly 5,000 molecular descriptors were calculated, while lipophilicity (logkw) and inhibitory activity (logKi) were used as drug properties. Genetic algorithm-partial least squares (GA-PLS) provided a QSPR model with high prediction capability employing only seven molecular descriptors. As a proof-of-concept, optimal drug structure was obtained by inverting the model with respect to reference drug properties. 3509 ligands were ranked accordingly. Top 10 ligands were further validated through molecular docking. Large-scale MD simulations were performed to test the stability of structures of selected ligands obtained through docking complemented with biophysical experiments.


Assuntos
Antígenos de Neoplasias/química , Anidrase Carbônica IX/química , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular , Sulfanilamidas/química , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/síntese química , Cromatografia Líquida , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sulfanilamida
16.
Eur J Med Chem ; 155: 670-680, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29936354

RESUMO

A series of new N'-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-1-(5-phenyl-1H-pyrazol-1-yl)amidine derivatives have been synthesized and evaluated in vitro by MTT assays for their antiproliferative activity against cell lines of colon cancer HCT-116, cervical cancer HeLa and breast cancer MCF-7. The studied compounds display selective activity mainly against HCT-116 and HeLa cells. Thus, five compounds show selective cytotoxic effect against HCT-116 (IC50 = 3-10 µM) and HeLa (IC50 = 7 µM). Importantly, the noticed values of IC50 for four compounds are almost 4-fold lower for HeLa than non-malignant HaCaT cells. More-in-depth biological research revealed that the treatment of HCT-116 and HeLa with active compound resulted in increased numbers of cells in sub-G1 phase in a time dependent manner, while non-active derivative does not influence cell cycle. Metabolic stability assays using liver microsomes and NADPH provide important information on compounds susceptibility to phase 1 biotransformation reactions.


Assuntos
Antineoplásicos/farmacologia , Pirazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Pirazóis/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Int J Mol Sci ; 19(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772699

RESUMO

A series of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)benzenesulfonamides were synthesized from 4-amino-N-(aryl/heteroaryl)benzenesulfonamides and 2,5-dimethoxytetrahydrofuran. All the synthesized compounds were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. Compound 28, bearing 8-quinolinyl moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 3, 5, and 7 µM, respectively. The apoptotic potential of the most active compound (28) was analyzed through various assays: phosphatidylserine translocation, cell cycle distribution, and caspase activation. Compound 28 promoted cell cycle arrest in G2/M phase in cancer cells, induced caspase activity, and increased the population of apoptotic cells. Relationships between structure and biological activity were determined by the QSAR (quantitative structure activity relationships) method. Analysis of quantitative structure activity relationships allowed us to generate OPLS (Orthogonal Projections to Latent Structure) models with verified predictive ability that point out key molecular descriptors influencing benzenosulfonamide's activity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Estrutura Molecular , Sulfonamidas/química , Sulfonamidas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Relação Quantitativa Estrutura-Atividade , Sulfonamidas/síntese química
18.
Eur J Med Chem ; 143: 1931-1941, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146134

RESUMO

A series of novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(6-substituted-4-chloro-1,3,5-triazin-2-ylamino)guanidine derivatives 9-20 have been synthesized by substitution of chlorine atom at the 1,3,5-triazine ring in compounds 5-8 with 3- or 4-aminobenzenesulfonamide and 4-(aminomethyl)benzenesulfonamide hydrochloride. All the synthesized compounds were evaluated for their inhibitory activity toward hCA I, II, IX and XII as well as anticancer activity against HeLa, HCT-116 and MCF-7 human tumor cell lines. The investigated compounds showed weak inhibitory potency against the human CA I, while activity toward hCA II was differentiated and depended on structure of inhibitor (KI: 5.4-933.1 nM). Compounds containing the 4-sulfamoylphenyl moiety (9-12) exhibited the strongest inhibitory activity against hCA IX with KI values from 37.1 to 42.9 nM, as well as against hCA XII in range of 31-91.9 nM. The most promising compound 12 (KI = 41 nM) showed the highest selectivity toward hCA IX versus hCA I (hCA I/hCA IX = 18) and hCA II (hCA II/hCA IX = 4). Compound 12 displayed prominent cytotoxic effect selectively toward HeLa cancer cells (IC50 = 17 µM) and did not exhibit toxicity to the non-cancerous HaCaT cells. In silico analysis suggested that despite the lack of a single binding pose, the selective affinity is conferred by specific interactions with an arginine moiety, as well as better-defined binding modes within the active site.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Guanidina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Guanidina/análogos & derivados , Guanidina/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
J Enzyme Inhib Med Chem ; 33(1): 255-259, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29271264

RESUMO

The two ß-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Brucella suis, BsuCA1 and BsuCA2, were investigated for their inhibition profile with a series of pyridine-3-sulphonamide derivatives incorporating 4-hetaryl moieties. BsuCA1 was effectively inhibited by these sulphonamides with inhibition constants ranging between 34 and 624 nM. BsuCA2 was less sensitive to these inhibitors, with KIs in the range of 62 nM - > 10 µM. The nature of the 4-substituent present on the pyridine ring was the main factor influencing the inhibitory profile against both isoforms, with 4-halogenophenylpiperazin-1-yl and 3,4,5-trisubstituted-pyrazol-1-yl derivatives showing the most effective inhibition. Some of these sulphonamides were most effective bacterial CA than human (h) CA I and II inhibitors, making them selective for the prokaryotic enzymes. Investigation of bacterial CA inhibitors may be relevant for finding antibiotics with a new mechanism of action compared to the clinically used agents for which substantial drug resistance emerged.


Assuntos
Brucella suis/enzimologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Piridinas/farmacologia , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
20.
Molecules ; 22(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112162

RESUMO

Candidiasis represent a serious threat for patients with altered immune responses. Therefore, we have undertaken the synthesis of compounds comprising a pyridine-3-sulfonamide scaffold and known antifungally active 1,2,4-triazole substituents. Thus a series of novel 4-substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamides have been synthesized by multistep reactions starting from 4-chloropyridine-3-sulfonamide via N'-cyano-N-[(4-substitutedpyridin-3-yl)sulfonyl]carbamimidothioates which were further converted with hydrazine hydrate to the corresponding 1,2,4-triazole derivatives 26-36. The final compounds were evaluated for antifungal activity against strains of the genera Candida, Geotrichum, Rhodotorula, and Saccharomycess isolated from patients with mycosis. Many of them show greater efficacy than fluconazole, mostly towards Candida albicans and Rhodotorula mucilaginosa species, with MIC values ≤ 25 µg/mL. A docking study of the most active compounds 26, 34 and 35 was performed showing the potential mode of binding to Candida albicans lanosterol 14α-demethylase. Also in vitro cytotoxicity of selected compounds have been evaluated on the NCI-60 cell line panel.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Antifúngicos/química , Candida/efeitos dos fármacos , Desenho de Fármacos , Geotrichum/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Micoses/microbiologia , Rhodotorula/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...